Метод обучения Уидроу—Хоффа
Как мы видели, персептрон ограничивается бинарными выходами. Б.Уидроу вместе со студентом университета М.Хоффом расширили алгоритм обучения персептрона для случая непрерывных выходов, используя сигмоидальную функцию. Второй их впечатляющий результат — разработка математического доказательства, что сеть при определенных условиях будет сходиться к любой функции, которую она может представить. Их первая модель — Адалин — имеет один выходной нейрон, более поздняя модель — Мадалин — расширяет ее для случая с многими выходными нейронами.
Выражения, описывающие процесс обучения Адалина, очень схожи с персептронными. Существенные отличия имеются в четвертом шаге, где используются непрерывные сигналы NET вместо бинарных OUT. Модифицированный шаг 4 в этом случае реализуется следующим образом:
4. Вычисляется ошибка для каждого нейрона посредством вычитания полученного выхода из требуемого выхода: